

Thrid Semester B.E. Degree Examination, Jan./Feb. 2023 Engineering Electromagnetic

Time: 3 hrs.

1

2

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. State and explain Coulomb's law for Electrostatic force.b. A point charge of 0.1nc is located at (0, 0.1, 0)m another charge of
 - b. A point charge of 0.1nc is located at (0, 0.1, 0)m another charge of 0.1nc is located at (0, -0.1, 0). Find \overline{E} at P (0.2, 0, 0)m. (05 Marks)
- c. Define Electric field intensity and flux density. Also obtain relation between E and D.

(06 Marks)

(05 Marks)

OR

- a. A uniform line charge of $i_L = 25$ nc/m lies on the line x = -3m and y = 4m in free space. Find \overline{E} at P(2, 3, 15)m. (05 Marks)
 - b. Derive expression for electric field intensity due to infinite line charge. (08 Marks)
 - c. Find the total charge inside a volume charge density as $10z^2 e^{-0.1x} \text{Sin } \pi y/\text{cm}^3$. The volume is defined between $-2 \le x \le +2$, $0 \le y \le 1$, and $3 \le z \le 4$. (03 Marks)

Module-2

- 3 a. State and prove Gauss's law.
 - b. Given that $\overline{D} = 5 \sin \theta \hat{a}_{\theta} + 5 \sin \phi \hat{a}_{\phi}$ find volume charge density at $\left[0.5m, \frac{\pi}{4}, \frac{\pi}{4}\right]$ in spherical

Coordinate system.

c. Define vector operator Del " ∇

OR

- 4 a. Obtain relation between E and V.
 - b. Find the potential at $r_A = 5m r_B = 15m$ due to a point charge Q = 500pc placed at the origin,
 - find the potential at $r_A = 5m$, assuming zero as potential at Infinity. Also obtain potential difference between point A and B. (06 Marks)
 - c. state and prove Gauss's divergence theorem.

Module-3

5	a.	Verify the potential field below satisfies Laplace equation or not	¥ 8.
		$V = 2x^2 - 3y^2 + z^2$	(04 Marks)
		Write note on uniqueness theorem and derive the same.	(07 Marks)
	c.	Derive Laplace and Poisson's equations.	(05 Marks)

1 of 2

(06 Marks)

(06 Marks)

(04 Marks)

(04 Marks)

(06 Marks)

(04 Marks)

(06 Marks)

- State and prove Ampere's circuital law. (06 Marks) a. b. If magnetic filed intensity in a region is $H = (3y - 2)\hat{a}_z + 2x\hat{a}_y$ find current density at origin.
- Write note on magnetic scalar and vector potentials. C.

Module-4

- Explain and derive force between differential current elements. (08 Marks) a. point charge Q = 18nc has a velocity of 10^{6} 5 × m/s in the b. Α direction $a_v = 0.6\hat{a}_x + 0.75\hat{a}_y + 0.3\hat{a}_z$. Calculate the magnitude of the force exerted on charge by the field.
 - i) $\overline{E} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z Kv/m$
 - ii) $\overline{B} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z mT$

6

7

iii) \overline{B} and \overline{E} acting together.

OR

Write note on magnetic circuits. 8 a.

- b. If B = 0.05 x \hat{a}_v T in a material for which $X_m = 2.5$. Find iii) $\overline{\mathbf{M}}$ ii) µ iv) J (04 Marks) i) μ_r
- Discuss the boundary conditions at the interface between 2 different magnetic materials. C. (06 Marks)

Module-5

a. List Maxwell's equations in point form and Integral form for time varying fields. (08 Marks) 9 For a lossy dielectric $\sigma = 5$ s/m and $\epsilon_r = 1$. The electric field intensity is $\overline{E} = 100$ Sin 10^{10} t. b. find J_c, J_d and frequency at which both have equal magnitudes. (08 Marks)

OR

- Starting from Maxell's equation derive the wave equation for a uniform plane wave 10 a. travelling in free space. (07 Marks) (06 Marks)
 - b. State and prove poynting theorem.
 - c. Wet Marshy soil is characterized by $\sigma = 10^{-2}$ s/m, $\epsilon_r = 15$ and $\mu_r = 1$. At the frequencies 60Hz, 1MHz, 100MHz indicate whether soil may be considered a conducting dielectric or neither. (03 Marks)

(08 Marks)

(06 Marks)